R16

Reg. No:									
----------	--	--	--	--	--	--	--	--	--

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech IV Year I Semester Regular Examinations Feb-2021 FINITE ELEMENT METHODS IN CIVIL ENGINEERING

(Civil Engineering)

	(Civil Engineering)			
Time:	3 hours Max. Marks	: 60		
	(Answer all Five Units $5 \times 12 = 60$ Marks)			
	UNIT-I			
1	a Explain in detail step by step procedure of FEM.	6M		
	Write down Merits and Demerits of FEM.			
	OR			
2	a Determine the deflection at the center of simply supported beam of span length 'L' subjected to Uniformly distributed load throughout its length. Use Rayleigh-Ritz method.	10M		
	b Explain the concept of strain energy.	2M		
	UNIT-II			
3	a Explain the Geometric invariance.	6M		
	b Explain the Displacement models.	6M		
	OR			
4	a Explain the Displacement models.	6M		
	b Explain about Elasticity equation.	6M		
	UNIT-III			
5	a Define shape function. write the properties of shape functions also ,write shape	8M		
	Function in the form of global and local co-ordinate system.	43.4		
	b Differentiate between CST and LST elements.	4M		
6	OR a Derive the shape function by using Global co-ordinate system.	6M		
U	b Derive the shape function by using Local co-ordinate system. b Derive the shape function by using Local co-ordinate system.	6M		
	UNIT-IV	UIVI		
7	a Derive stress - strain relationship in matrix formulation.	4M		
	b Derive the stiffness matrix for stepped bar element.	8M		
	OR	01,1		
8	a Derive Stress-Strain relationship matrix.	6M		
	b Derive Stress displacement relationship matrix.	6M		
	UNIT-V			
9	a Determine the Cartesian co-ordinates of the point 'p' which has local co-ordinates	10M		
	ε =0.6 and η =0.3. The Global co-ordinates are (2,4) (3,6) (8,12) and(4,8). All			
	dimensions are in mm.			
	b Explain about plane stress and plane strain conditions.	2M		
10	OR a Explain about formulation of 4-noded Iso-parametric Axi - Symmetric element.	71/4		
10	b Explain about formulation of 4-noded iso-parametric Axi - Symmetric element.	7M 5M		
	Daptain about tagrangian ciomonis.	5171		